

- Glass Façade Herz Jesu Church, Munich
- Analysis of U-type Bonding
- Parameter Studies Bonding Geometry
- Conclusions and Outlook

Glass Façade of the Herz Jesu Church

Architectural requirements: Minimum of visible load-carrying structures

- Sophisticated design solution
 - Usage of glass beams as supporting members
 - Load bearing line type bonding by Silicone adhesive

The Design Philosophy – Bearing and Transparency

Detail of the Glass Façade

- Isolated glass units:
- Horizontal glass beams:
- Vertical glass beams:

width 3.35 m length 6.72 m varying length (1.6 – 2.4 m)

- Three-sided bonding design of U-type geometry
- Selection of adequate channel type cross section for
 - tailoring joint regarding structural properties
 - protecting the adhesive against environmental influences
- Note: Design not covered by European guideline ETAG 002 !

Testing of Bonded Glass Beam Structures

- Favourable behaviour of glass beam elements in case of glass fracture
 - "Locking" of broken parts of glass beams by inner compression
 - On-going provision of load bearing capabilites until repair of failed component

Tension Testing of Bonded Glass Beam Specimens

- Three different phases of load-deflection behaviour
 - Below 1.5mm (I) high stiffness of joint
 - Between 1.5mm and 8mm (II) significant drop of joint stiffness
 - Above 8mm (III) failure of the joint specimen

Tension Testing of Bonded Glass Beam Specimens

- Full joint stiffness for phase I:
- Failure by cracks in phase III:
- What happens in phase II ???

Behaviour expected

Behaviour expected

To be explained ...

- Glass Façade Herz Jesu Church, Munich
- Analysis of U-type Bonding
- Parameter Studies Bonding Geometry
- Conclusions and Outlook

Finite Element Analysis of Bonding Specimen

- Maximum principal stress distribution of top left quarter
- Load level corresponding to boundary I-II
- High stress levels in front region
 - − ≈ 90% load transfer by tension stress in front region
 - − ≈ 10% load transfer by shear stress in side region
- Load distribution due to
 - almost perfect incompressibility of Silicone adhesive
 - significant suppression of lateral contraction of Silicone in front region

Failure Mechanism: What happens in Phase II?

Images by GLASCONSULT, Uitikon, Swizzerland

- Hypothesis for overloading behaviour of U-type bondings
 - Partial and at the end total failure of front region due to high stresses
 - Drop of total joint stiffness due to increased flexibility in front region
 - Load transfer shifted to undamaged side regions in terms of shear stresses
 - Boundary II-III in accordance to maximum shear strains experienced by ETAG specimens
- Final confirmation of hypothesis by experimental and numerical analysis of degraded U-type bonding geometries

Degraded U-type Bonding Geometries

Results:

- High initial stiffness for bondings with operative front region
 - Initial load transfer mainly by tension in front region
- Low stiffness for bondings with operative side region only
 - Load transfer for large displacements mainly by shear

Conclusion: Failure hypothesis for U-type bonding geometries confirmed

Degraded U-type Bonding Geometries: FE Results

- High stiffness for front region operative
- Low stiffness for operative side region only
- Qualitative agreement with experimental results

- Glass Façade Herz Jesu Church, Munich
- Analysis of U-type Bonding
- Parameter Studies Bonding Geometry
- Conclusions and Outlook

U-type Bonding Geometry Parameter Variations

- Three main parameters for U-type bonding geometries (cross sections)
 - Adhesive thickness of front and side region
 - Adhesive thickness typically between 5mm and 8mm for Silicone in structural glazing
 - Front region area defined by thickness of glass body
 - Glass thickness depending on sizing due to load requirements
 - Side region area defined by size of PFC (parallel flange channel)
 - Parameter for sizing of bonding geometry, determinede at end of phase II

- Expected impact on load bearing capacities according to previous findings
 - Increase of front area \rightarrow Higher loads before drop of stiffness (phase I)
 - Increase of side area \rightarrow Higher loads via shear load path (significant for phase II)

Overall failure of the bonding affected by these design parameters

Behaviour of Different U-type Geometries

Bonding status	Initial specimen stiffness [N/mm]	Beginning fracture		Maximum load	
		Load [N]	Displace ment [mm]	Load [N]	Displace ment [mm]
Baseline, 3x12 lf=22	2080	3400	2.6	4500	8.2
3x12 lf=15	1530	3200	3,0	3650	5,1
2x12 lf=15	760	3100	2,2	3400	2,7

- Expected trends qualitatively confirmed by results
- Note:Beginning fracture corresponding to boundary I-IIMaximum load is corresponding to boundary II-III

18

Role of Bonding Length / Width

- Significant impact of suppression of lateral contraction on mechanical behaviour for U-type bondings
- Level of suppression of lateral contraction is a function of bonding length
 - Very long bondings
 - Assumption of plain strain states: no strains in bonding main axis
 - Almost perfect suppression of lateral contraction
 - Very small bondings
 - Assumption of plain stress states
 - Free lateral contraction in bonding main axis
 - For investigated bonding geometry below (FE quarter models !)
 - Outer 50mm affected by free surface effects -> 3D states
 - For lengths larger 50mm, plain strain states can be assumed inside

Free edge

1/2 = x —

Variation of U-type Bonding Length

- Parameter variation of U-type bonding length
 - Parameter x: Half bonding length due to FE model symmetry
 - Left figure: Total load and shares for front and side regions for half model
 - Right figure: Load per length for half model

- Results
 - Experimental testing with small specimen e.g. in case of Herz Jesu church is conservative !
 - Assumption of pure plain strain states for entire bonding is not conservative !

- Glass Façade Herz Jesu Church, Munich
- Analysis of U-type Bonding
- Parameter Studies Bonding Geometry
- Conclusions and Outlook

Conclusions and Outlook

- Successful application of load bearing U-type bonding to glass façade of Herz Jesu church, Munich
- Detailed analysis of load transfer and failure mechanism of U-type bonding geometries by experimental and numerical means
 - Very high loading of front region due to
 - almost perfect incompressibility of Silicone
 - suppression of lateral contraction by bonding geometry
- Impact of front and side regions on mechanical bonding properties identified by
 - Investigation of configurations with different degradations
 - Baseline
 - Side regions disabled
 - Front region disabled
 - Investigation of configurations with different geometries
 - Different glass thickness
 - Varying side regions
- Set-up of related design rules and analysis of 3D effects on the free surface allowing the estimation of efficiency loss

